3,217 research outputs found

    GMRT observations of X-shaped radio sources

    Get PDF
    We present results from a study of X-shaped sources based on observations using the Giant Metrewave Radio Telescope (GMRT). These observations were motivated by our low frequency study of 3C 223.1 (Lal & Rao 2005), an X-shaped radio source, which showed that the wings (or low-surface-brightness jets) have flatter spectral indices than the active lobes (or high-surface-brightness jets), a result not easily explained by most models. We have now obtained GMRT data at 240 and 610 MHz for almost all the known X-shaped radio sources and have studied the distribution of the spectral index across the sources. While the radio morphologies of all the sources at 240 and 610 MHz show the characteristic X-shape, the spectral characteristics of the X-shaped radio sources, seem to fall into three categories, namely, sources in which (A) the wings have flatter spectral indices than the active lobes, (B) the wings and the active lobes have comparable spectral indices, and (C) the wings have steeper spectral indices than the active lobes. We discuss the implications of the new observational results on the various formation models that have been proposed for X-shaped sources.Comment: The paper contains 12 figures and 3 tables, accepted for publication in MNRAS Main Journal, please note, some figures are of lower qualit

    The two-component giant radio halo in the galaxy cluster Abell 2142

    Get PDF
    We report on a spectral study at radio frequencies of the giant radio halo in A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. We performed deep radio observations with the GMRT at 608 MHz, 322 MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A2142. We studied the spectral index in two regions: the central part of the halo and a second region in the direction of the most distant south-eastern cold front, selected to follow the bright part of the halo and X-ray emission. We complemented our observations with a preliminary LOFAR image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. α118 MHz1.78 GHz=1.33±0.08\alpha^{\rm 1.78~GHz}_{\rm 118~MHz}=1.33\pm 0.08. The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. α118 MHz1.78 GHz1.5\alpha^{\rm 1.78~GHz}_{\rm 118~MHz}\sim 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A2142, similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis merger.Comment: 18 pages, 10 figures, 4 tables - A&A, accepte

    Junction of several weakly interacting quantum wires: a renormalization group study

    Get PDF
    We study the conductance of three or more semi-infinite wires which meet at a junction. The electrons in the wires are taken to interact weakly with each other through a short-range density-density interaction, and they encounter a general scattering matrix at the junction. We derive the renormalization group equations satisfied by the S-matrix, and we identify its fixed points and their stabilities. The conductance between any pair of wires is then studied as a function of physical parameters such as temperature. We discuss the possibility of observing the effects of junctions in present day experiments, such as the four-terminal conductance of a quantum wire and crossed quantum wires.Comment: RevTeX, 13 pages, including 4 eps figure

    Complex diffuse radio emission in the merging PLANCK ESZ cluster Abell 3411

    Get PDF
    We present VLA radio and Chandra X-ray observations of the merging galaxy cluster Abell 3411. For the cluster, we find an overall temperature of 6.4 keV and an X-ray luminosity of 2.8 x 10^{44} erg s^{-1} between 0.5 and 2.0 keV. The Chandra observation reveals the cluster to be undergoing a merger event. The VLA observations show the presence of large-scale diffuse emission in the central region of the cluster, which we classify as a 0.9 Mpc size radio halo. In addition, a complex region of diffuse, polarized emission is found in the southeastern outskirts of the cluster, along the projected merger axis of the system. We classify this region of diffuse emission as a radio relic. The total extent of this radio relic is 1.9 Mpc. For the combined emission in the cluster region, we find a radio spectral index of -1.0 \pm 0.1 between 74 MHz and 1.4 GHz. The morphology of the radio relic is peculiar, as the relic is broken up into five fragments. This suggests that the shock responsible for the relic has been broken up due to interaction with a large-scale galaxy filament connected to the cluster or other substructures in the ICM. Alternatively, the complex morphology reflects the presence of electrons in fossil radio bubbles that are re-accelerated by a shock.Comment: Accepted for publication in ApJ, 8 pages, 5 figure

    Metal chaperones prevent zinc-mediated cognitive decline

    Full text link
    © 2014 Elsevier Inc. Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6 weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease

    NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901

    Get PDF
    AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) Low Mass X-ray Binary (LMXB) showcasing intense ionised Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data-sets (obtained between 2013-2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state the emission can be described by a disk black body (kT1.11.2kT\sim1.1-1.2 keV and inner disc radius rDBB14r_{DBB}\sim14 km), plus hot (kT2.23.0kT\sim2.2-3.0 keV) black body radiation with a small emitting radius (rBB0.50.8r_{BB}\sim0.5-0.8 km) likely associated with the boundary layer or NS surface, plus a faint Comptonisation component. Imprinted on the spectra are clear absorption features created by both neutral and ionised matter. Additionally, positive residuals suggestive of an emission Fe Kα\alpha disc line and consistent with relativistic ionised reflection are present during the soft state, while such residuals are not significant during the hard state. The hard state spectra are characterised by a hard (Γ1.92.1\Gamma\sim1.9-2.1) power law, showing no evidence for a high energy cut off (kTe>60140kT_e>60-140 keV) and implying a small optical depth (τ<1.6\tau<1.6). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state, that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad band SED as typically observed in accreting neutron stars.Comment: Accepted for publication in MNRA

    Transport through quasi-ballistic quantum wires: the role of contacts

    Get PDF
    We model one-dimensional transport through each open channel of a quantum wire by a Luttinger liquid with three different interaction parameters for the leads, the contact regions and the wire, and with two barriers at the contacts. We show that this model explains several features of recent experiments, such as the flat conductance plateaux observed even at finite temperatures and for different lengths, and universal conductance corrections in different channels. We discuss the possibility of seeing resonance-like structures of a fully open channel at very low temperatures.Comment: revtex, 5 pages, 1 eps figure; clarifications added in light of new experiment

    Radio-continuum spectra of ram pressure stripped galaxies in the Coma Cluster

    Full text link
    Aims:Aims: We used the nearby Coma Cluster as a laboratory in order to probe the impact of ram pressure on star formation as well as to constrain the characteristic timescales and velocities for the stripping of the non-thermal ISM. Methods:Methods: We used high-resolution (6.53kpc6.5'' \approx 3\,\mathrm{kpc}), multi-frequency (144MHz1.5GHz144\,\mathrm{MHz} - 1.5\,\mathrm{GHz}) radio continuum imaging of the Coma Cluster to resolve the low-frequency radio spectrum across the discs and tails of 25 ram pressure stripped galaxies. With resolved spectral index maps across these galaxy discs, we constrained the impact of ram pressure perturbations on galaxy star formation. We measured multi-frequency flux-density profiles along each of the ram pressure stripped tails in our sample. We then fit the resulting radio continuum spectra with a simple synchrotron aging model. Results:Results: We showed that ram pressure stripped tails in Coma have steep (2α1-2 \lesssim \alpha \lesssim -1) spectral indices. The discs of galaxies undergoing ram pressure stripping have integrated spectral indices within the expected range for shock acceleration from supernovae (0.8α0.5-0.8 \lesssim \alpha \lesssim -0.5), though there is a tail towards flatter values. In a resolved sense, there are gradients in spectral index across the discs of ram pressure stripped galaxies in Coma. These gradients are aligned with the direction of the observed radio tails, with the flattest spectral indices being found on the `leading half'. From best-fit break frequencies we estimated the projected plasma velocities along the tail to be on the order of hundreds of kilometers per second, with the precise magnitude depending on the assumed magnetic field strength.Comment: 18 pages, 10 figures, 2 appendices, accepted for publication in A&
    corecore